kintoneの「検索AI」は使えない? 失敗例から学ぶ、AIアシスタント活用のコツ

「あの資料、どこ?」埋もれたデータの捜索で疲弊していませんか?

kintoneで過去のデータを探す際、何度もフィルタ設定を繰り返していませんか?

トラブルが発生したとき、情報を探すために15分も検索を続ける。過去の案件のレコードを見つけようとしても、300件もの検索結果が表示され、結局レコードを1つずつ開いて確認する羽目になる。このような「検索ストレス」は日常的に起きている課題です。

標準検索では、条件を細かく設定しても望んだ結果にたどり着けないことがあります。キーワードを変えて何度も試し、それでも見つからず、最終的には同僚に「あの件、どうなったっけ」と聞いてしまう。これはどこの現場でも起こりうることです。

アイキャッチ

この記事では、kintoneのAIラボの機能の1つである「検索AI」の使い方と弱点を解説し、データの捜索にかかる時間を大幅に削減するポイントを紹介します。

導入はわずか1分!kintoneの検索AI(AIアシスタント)を有効化する設定手順

kintoneの検索AI機能を使うには、システム管理画面で有効化する必要があります。

設定は非常にシンプルです。kintoneのトップ画面の設定アイコンから「kintone AI管理」を開きます。

kintone操作画面1

管理画面で「kintone AIの有効化」のチェックボックスをクリックします。さらに下部の画面で「検索AI」にチェックを入れるだけで完了です。

kintone操作画面2

この設定が完了すると、レコード一覧画面や詳細画面のヘッダーに、AI検索用のアイコンが自動的に表示されます。アイコンは虫眼鏡にAIロゴが組み合わされたデザインで、ここから自然言語での検索が可能になります。設定自体は1分で完了するため、まずは有効化してみることをおすすめします。

より正確な情報は、kintone公式のヘルプページをご覧ください。

検索AIを上手に使うコツは「データの蓄積」と「プロンプトの工夫」

検索AI機能を導入しても、すぐに全ての課題が解決するわけではありません。多くの現場で起きる誤解は、「ツールを入れたら終わり」という考え方です。AIは導入した瞬間から完璧に機能するものではなく、適切な準備と使い方があって初めて効果を発揮します。

kintone検索AI活用の成功への3ステップフローチャート

 

成果を出すためのポイントは2つあります。1つ目は「データの蓄積」です。kintone内に情報が十分に入力されていなければ、AIは何も答えられません。まずはデータを適切にためていく意識と仕組みを整える必要があります。

そして2つ目は「プロンプトの工夫」です。プロンプトとはAIに入力する文章のことで、Google検索のように単語だけを投げるのではなく、背景情報や出力形式を具体的に伝えることで、回答の精度が劇的に向上します。

この2点を守って正しく運用すれば、属人化していた知見を「現場の集合知」に変えられます。ベテラン社員の頭の中にある過去のトラブル対応履歴や、特注仕様の判断基準を、新人でも瞬時に引き出せる状態にできるのです。検索時間は45分から5分へと大幅に短縮され、現場メンバーの「探す」というストレスから解放されます。

失敗例:検索AIが役に立たない原因は「連携能力の壁」「データ不足」「ハルシネーション」

kintoneの検索AIには、期待を裏切る3つの制約があります。それぞれの原因を正しく理解することで、導入失敗のリスクを回避できます。

1. アプリの境界と「外部連携」の壁

kintone検索AIのアプリ間連携と外部ツール連携における制限を示すシステム構成図

検索AIは、現在開いているアプリのデータしか参照できません。

例えば、在庫管理アプリで検索しているとき、発注履歴アプリにある過去の発注データと照らし合わせてほしいと思っても、AIは別アプリのレコードを参照できないのです。権限設定や連携の仕組み次第では「回答不能」という結果が返ってきます。

また、AIが導き出した回答をSlackやMicrosoft Teamsへ即座に通知したいと思っても、標準機能ではシームレスな連携ができません。kintoneの画面を開き、そこで検索し、結果を手動でコピーして他のツールに貼り付ける必要があります。

この「アプリ間のデータの壁」と「外部ツールへの出力の壁」は、現場の期待を裏切る大きな要因です。標準機能の制限を理解した上で、必要に応じて外部連携ツールの導入を検討する必要があります。

2. 「データなきAI」は沈黙する

そもそも情報が入力されていなければ、AIは何も答えられません。備考欄が空白のまま放置されていたり、過去のトラブル対応履歴が記録されていなかったりすると、検索AIに質問しても「該当する情報が見つかりません」という回答しか返ってきません。

検索AIはインターネット上の情報を検索するわけではなく、あくまで社内データベースの検索窓として機能するだけなのです。

kintone検索AIの効果を左右するデータ蓄積の重要性を示すBefore/After比較表

そこで、データの蓄積文化を作ることが、検索AI活用の第一歩です。レコード数が50件で備考欄の記入率が20%しかない状態と、レコード数が500件で記入率が80%ある状態では、検索成功率が30%から85%へと劇的に向上します。まず情報を溜める仕組みを整えることが不可欠です。

3. 「嘘をつく(ハルシネーション)」可能性

AIはもっともらしい嘘をつくことがあります。特に数値が重要な生産管理では、この特性が致命的なミスに繋がる恐れがあります。

例えば「今月の売上合計はいくら?」と質問したとき、AIは確率的に「それっぽい数字」を出力する傾向があり、正確な足し算を保証しません。実際の数値が347万2,583円であっても、AIは「約350万円です」と回答する可能性があります。

この2万7,417円の誤差が、発注ミスや在庫不足を引き起こすかもしれません。これは生成AI全般に共通する弱点であり、kintoneにおいても例外ではないのです。

kintone検索AIにおけるハルシネーションのリスクと回避方法を示す警告

鉄則は、正確な数字が必要な場合、必ずkintone標準の「集計機能」や「グラフ機能」を使用することです。AIは「データの抽出」には強いですが、「計算」には向いていません。AIの回答を鵜呑みにせず、最終確認は人間が行う運用フローを確立する必要があります。

失敗を回避する聞き方のコツ|「背景情報」と「出力形式」で優秀なAIアシスタントに

検索AIの精度を高めるには、質問の仕方が重要です。Google検索のように単語だけを投げるのではなく、状況説明と期待する回答形式を明示することで、AIは驚くほど優秀なアシスタントに変わります。

「プロンプト」を丁寧に、「対話」を大事にして利用する

kintone検索AIで効果的なプロンプト入力のGood/Bad比較表と実践例

AIへの質問(プロンプト)を工夫するだけで、回答の質が劇的に変わります。

Google検索のような「単語だけ(例:出張申請 ルール)」の入力は、AIの精度を下げてしまうもったいない例です。AIは文脈を理解する能力を持っているため、背景情報と出力形式を具体的に伝えることで、期待通りの回答を引き出せます。

例えば、「出張申請 ルール」と入力しただけでは、AIは「該当する情報が見つかりません」と返すかもしれません。しかし、「新幹線を使う出張申請のルールについて、承認フローも含めて教えて」と具体的に問えば、AIは「出張申請アプリのレコードから3件見つかりました。承認フローは…」と詳細な回答を返します。

一度の回答で諦めず、条件を絞り込んでいく「対話」のプロセスが重要です。最初の回答が期待外れでも、「先月の分だけに絞って」「担当者ごとにリストアップして」と追加の条件を伝えることで、AIは理解を深めていきます。AIはバカではありません。まだあなたの現場を知らないだけです。聞き方ひとつで、最高のアシスタントに変わるのです。

さらに高度な活用へ!「n8n」でkintoneの壁を突破する

kintone標準機能の「別アプリのデータを検索できない」「外部ツールと連携できない」という弱点の解決策として、自動化ツール「n8n」を使った外部連携があります。

アプリを跨いだ検索や、外部ツールへの自動送信を実現

n8nを使えば、kintoneのデータを外部の生成AIに渡し、回答を他のツールへ自動送信できます。

具体的には、在庫管理アプリ、発注履歴アプリ、トラブル履歴アプリという3つのアプリから情報を集め、n8nで統合処理します。統合されたデータをOpenAI(ChatGPT)などの生成AIに送り、分析や要約を実行します。その結果をSlackやMicrosoft Teamsへ自動通知する、という一連の流れをプログラミングなしで構築できます。

この仕組みの最大のメリットは、「複数のアプリから情報を集めて要約し、チャットに投げる」という標準機能だけでは届かない高度な自動化を実現できる点です。例えば、毎朝8時に「昨日の在庫変動と発注履歴を要約してSlackに投稿」といった定期レポートも自動化できます。

ただし、n8n連携には初期設定の学習コストと、OpenAI APIの従量課金というコストが発生します。まずは標準の検索AIで試し、限界を感じたタイミングで検討するのが賢明な判断です。

詳しくは関連記事をご覧ください。

【生成AI活用】kintone×n8nで貯まったデータをスムーズに連携!データ活用の幅を広げよう

情報を溜め、プロンプトを工夫して検索AIを上手に使いこなそう

kintone検索AIの強みと弱点を正しく理解することが、成功への第一歩です。

この記事で解説した通り、検索AIは「魔法の杖」ではありません。アプリ間のデータの壁があり、外部連携には制限があり、ハルシネーションのリスクも存在します。しかし、これらの弱点を理解した上で、データを徹底的に蓄積し、プロンプトを工夫して使えば、検索時間を45分から5分へと劇的に短縮できます。

人間が最終確認を行う運用フローを確立することが不可欠です。AIの回答を鵜呑みにせず、特に数値計算については必ずkintone標準の集計機能で検証してください。AIは聞き方ひとつで最高のパートナーに変わります。

まずは1つのアプリからデータ整備とAI試行を始めましょう。良い回答と悪い回答をメモし、プロンプトのパターンを共有していくことで、誰でも過去の知見を引き出せる「現場の集合知」へと進化していきます。週単位で検索成功率が向上し、月単位で属人化が解消されていく過程を、ぜひ体験してください。

最後に

ライブAI開発の案内
株式会社アディエムでは、kintone × 生成AIで日々の業務改善に取り組んでいます。
今回ご紹介したようなワークフローの他にも、お客様の業務に合った改善をご提案させて頂きます。
無料相談も実施しておりますので、お気軽にお問い合わせ頂ければ幸いです。

お問い合わせはこちら

関連記事